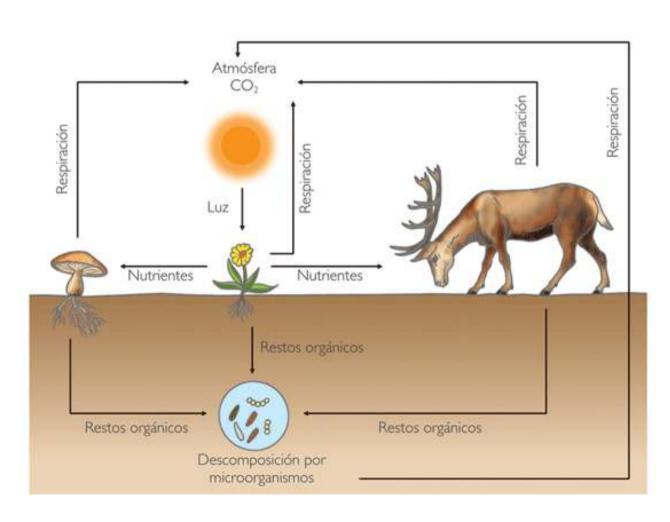

- Einleitung
- Angewandte Methodologie
- Ergebnisse
- Schlussfolgerungen

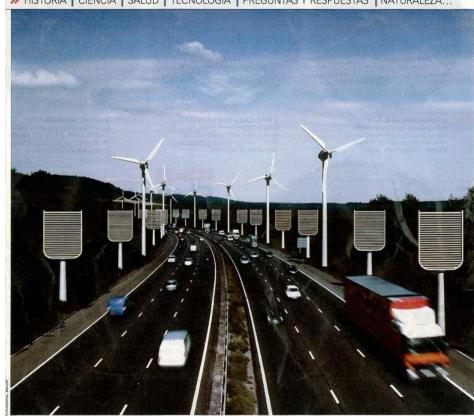
- Einleitung
- Angewandte Methodologie
- Ergebnisse
- Schlussfolgerungen



Athmosphärisches CO₂

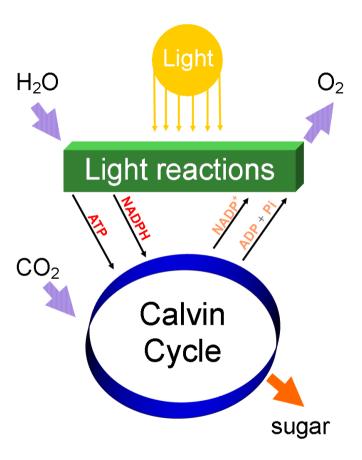
Atmosphärisches CO₂

Boden



Nach Vorhersagen werden 100.000 KÜNSTLICHE BÄUME im Jahr 2050 CO2-Emissionen von 330 mT absorbieren.

(Bild: Künstliche Bäume in der Nordsee IMechE's künstlerische Impressionen für GB 2060)



¿Serán así los árboles del futuro? Puede que sí, y antes de lo que imagina. Si se cumplen los planes de un equipo de científicos de la londinense Institution of Mechanical Engineers, en 10 o 20 años estos extraños 'matamoscas gigantes' podrían formar parte del paisaie. Son 'árboles artificiales' diseñados para atrapar el dióxido de carbono de la atmósfera: un 'bosque' de 100.000 ejemplares podría absorber las emisjones producidas por el transporte

Fotosynthese

Erste Phase

 $H_2O + NADP^+ + Pi + ADP \longrightarrow O_2 + H+ + NADPH + ATP.$

luz

Zweite Phase

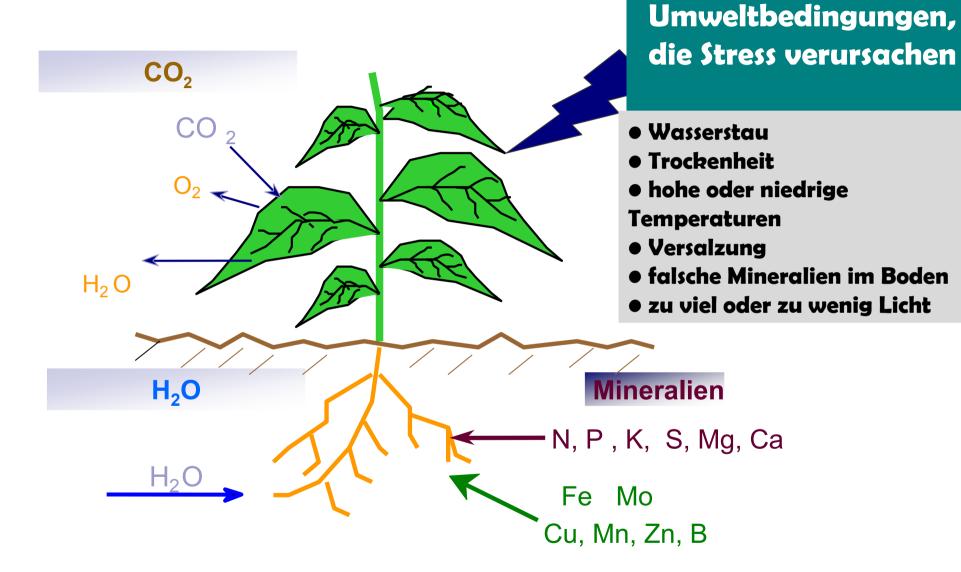
CO2 + NADPH + H+ + ATP ----GLUCOSA + Pi + NADP+ + ADP

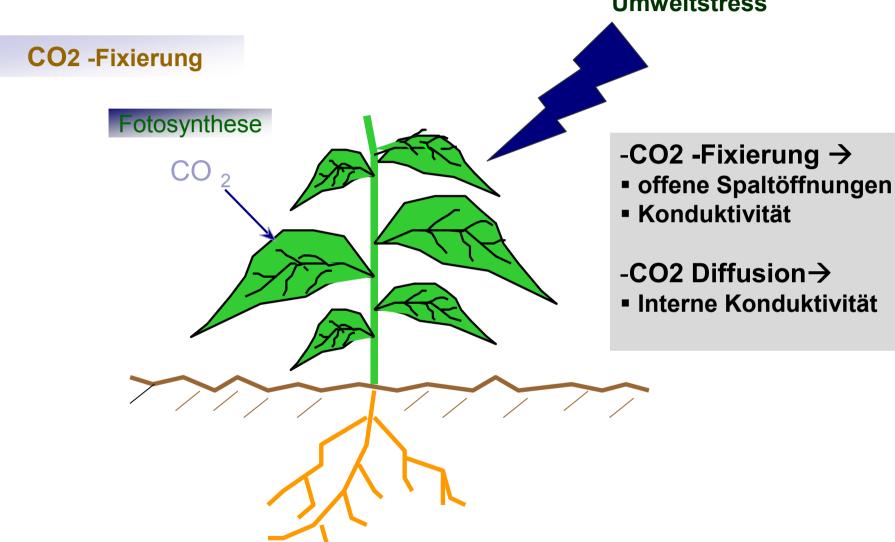
Unterschiedliche CO₂-Fixierungen

<u>C3-Pflanzen</u>: Spaltöffnungen tagsüber für die ${\rm CO_2}$ -Fixierung geöffnet. So entsteht ein ständiger Wasserverlust durch Transpiration.

C4-Pflanzen: Spaltöffnungen tagsüber geöffnet. Da sie eine CO_2 Pumpe haben, können sie die Spaltöffnungen schließen und die Fotosynthese fortsetzen.

<u>CAM-Pflanzen</u>: Spaltöffnungen nachts geöffnet. Geringerer Wasserverlust durch Transpiration. Die CO_2 Pumpe wirkt wie ein Speicher.




UMWELTSTRESS

 CO_2

Umweltstress

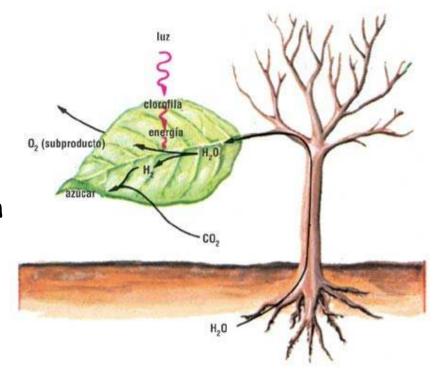
Murcianische Landwirtschaft

Ausgezeichnete klimatische Bedingungen - Hohe Produktivitä

Keine limitierenden Faktoren – Optimisierung der Ressourcen

Gute Anbaumethoden -

Nachhaltiges Management landwirtschaftlicher Betriebe



ZIELE

In dieser wissenschaftlichen Arbeit wurde die CO_2 -Fixierung der wichtigsten Anbauarten der Region Murcia bestimmt.

- ·Landbau mit einer bewässerten Fläche von
- > 1000 Ha
- ·Die CO2 -Fixierung wurde berechnet für:
 - Jährlicher Biomasse
 - Kohlenstoffgehalt im Gewebe

- Einleitung
- Angewandte Methodologie
- Ergebnisse
- Schlussfolgerungen

Pflanzenmaterial und Vorgehen

CO₂ -Fixierung

Produktion jährlicher Biomasse:

Pflanze
Baum
Trieb (Frucht)
Wurzel

Sol Energía solar

Gas carbónico

Clorofila

Agua y Sales minerales

Raíces

Der Gesamtkohlenstoffgehalt wurde anhand der jährlichen Biomasse analysiert.

Früchte und Gemüse

Tomate, Pfeffer, Wassermelone, Honigmelone, Kopfsalat und Brokkoli

- ·Von jeder Art wurden drei Pflanzen am Ende ihres Wachstumszyklus geerntet.
- •Früchte, Blätter und Wurzeln wurden getrennt und zur Bestimmung des Frischgewichts gewogen.
- •Zur Bestimmung des Trockengewichts wurden sie in einen Heißluftofen bei 70 ° C bis zum Erreichen eines konstanten Gewichtes gelegt.
- ·In einer Labormühle wurden sie gemahlen.
- Der Kohlenstoffgehalt wurde gemessen.

Obstbäume

Aprikose, Pflaume, Pfirsich, Nektarine und Tafeltrauben

- ·Von jeder Art wurden je drei Pflanzen nach der Obsternte genommen
- ·Blätter, diesjährige Zweige und Wurzeln wurden getrennt und zur Bestimmung des Frischgewichts pro Jahr gewogen.
- •Stamm und ältere Äste und Zweige wurden gewogen und zur Bestimmung des jährlichen Frischgewichts nach n-Jahren geteilt.
- ·Obsternten wurden getrennt genommen.
- ·Eine repräsentative Probe wurde zur Ermittlung des Trockengewichts in einen Heißluftofen bei 70 ° C bis zum Erreichen eines konstanten Gewichts gelegt.
- ·In einer Labormühle wurden sie gemahlen.
- ·Der Kohlenstoffgehalt wurde gemessen.

Zitrusbäume

Zitrone, Orange und Mandarine

- ·Von jeder Art wurden drei Pflanzen genommen.
- ·Blätter, frische Zweige und Wurzeln wurden abgetrennt zur Bestimmung des Frischgewichts. Zur Berechnung des gesamten Kohlenstoffgehalts pro Baum und Jahr wurde eine Erneuerung der Biomasse nach drei Jahren zugrunde gelegt.
- ·Stamm und ältere Äste und Zweige wurden gewogen und zur Bestimmung des jährlichen Frischgewichts nach n-Jahren geteilt.
- ·Die Früchte wurden geerntet.
- •Zur Bestimmung des Trockengewichts wurde eine repräsentative Probe in einen Heißluftofen bei 70° C bis zum Erreichen eines konstanten Gewichtes gelegt.
- ·In einer Labormühle wurden sie gemahlen.
- ·Der Kohlenstoffgehalt wurde gemessen.

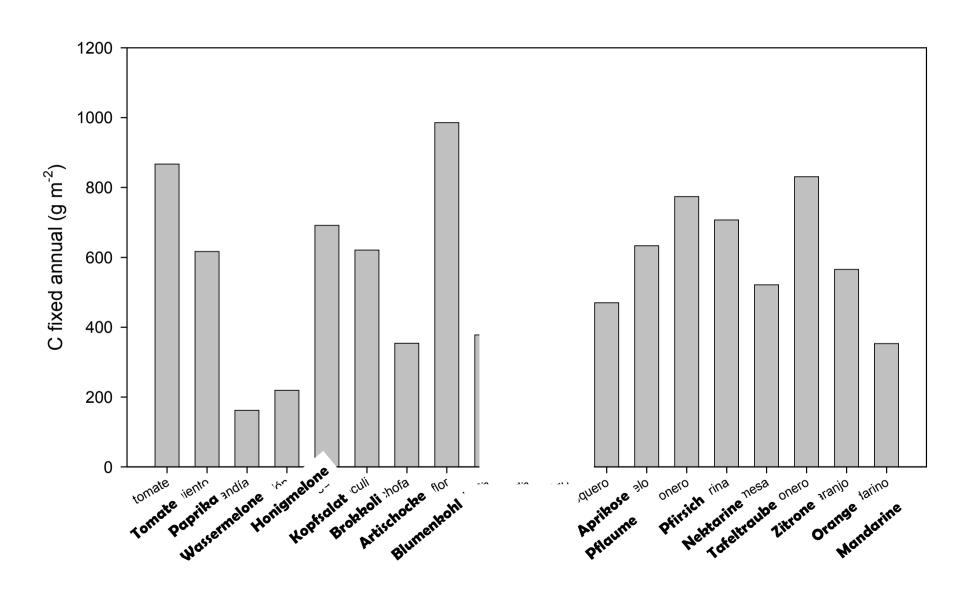
Heißluftofen bei 70°C

Kohlenstoff-Analysegerät

Der gesamte Kohlenstoffgehalt wurde in Unterproben (von 2-3 mg PS) von Blättern, Trieben, Früchten und Wurzeln mit einem N-C-Analysegerät bestimmt.

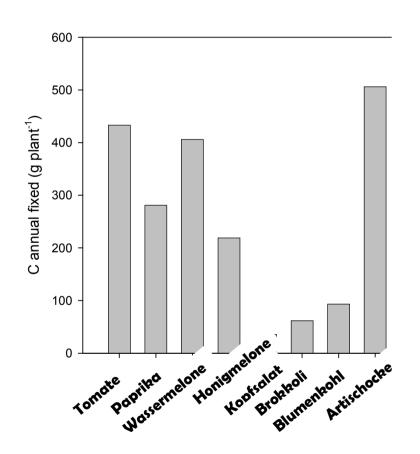
NC-Analysegerät Thermo Finnigan 1112 EA. Basic Analizer (Thermo Finnigan, Mailand, Italien).

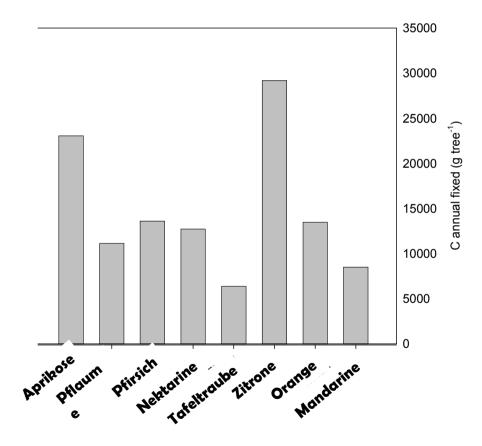
- Einleitung
- Angewandt Methodologie
- Ergebnisse
- Schlussfolgerungen


Ergebnistabellen

	Frisch gewicht	Trocken- gewicht	Feuchte	%C	C GESAMT	C GESAMT	PFLANZ	E GESAMT
TOMATE	(g Pflanze ⁻¹)	(g Pflanze ⁻¹)	%	(% TG.)	(g m ⁻² Jahr ⁻¹)	(T ha ⁻¹ Jahr ⁻¹)	g C Pflanze ⁻¹	g CO ₂ Pflanze ⁻¹
Wurzeln	134	22,5	83,23	38,96	17,5	0,2	8,8	32,3
Triebe	1.434	296,8	79,30	40,36	240	2,4	120	440
Bl□ t er	866	169,7	80,40	40,99	139	1,4	69,6	255
Fr⊡chte	3.394	510,8	84,95	46,05	470,4	4,7	235,2	862
Gesamt	5.827	1.000	Ź	Ź	867	8,7	433	1.590

	Frisch -gewicht	Trocken- gewicht	Feuchte	%C	C GESAMT	C GESAMT	TOTA	AL TREE
APRICOSE	(g Baum ⁻¹)	(g Baum ⁻¹)	%	(% Trockengewicht)	(g m ⁻² Jahr)	(T ha ⁻¹ Jahr ⁻¹)	g C Baum ⁻¹	g CO₂ Baum ⁻¹
Wurzeln	25.217	15.130	40,00	43,04	132,8	1,3	6.512	23.870
€ste und Zweige	10.185	6.057	40,53	46,74	57,8	0,6	2.831	10.381
Bl□ t er	12.081	5.074	Ź 58,00	45,13	46,7	0,5	2.290	8.396
Fr⊡chte	125.000	18.588	85,13	64,5	174,3	1,7	8.545	31.331
Stamm	10.297	6.134	40,53	46,74	58,5	0,6	2.867	10.512
GESAMT	182.780	50.983	Ź	Ź	470,1	4,7	23.045	84.498

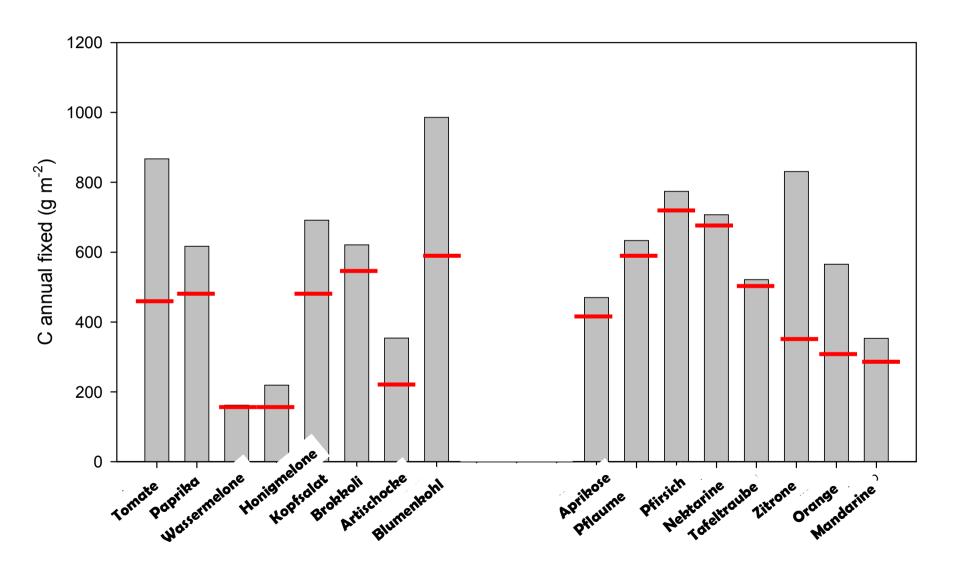



Gesamter jährlich fixierter Kohlenstoff pro Anbauart nach Flächeneinheit (m²)

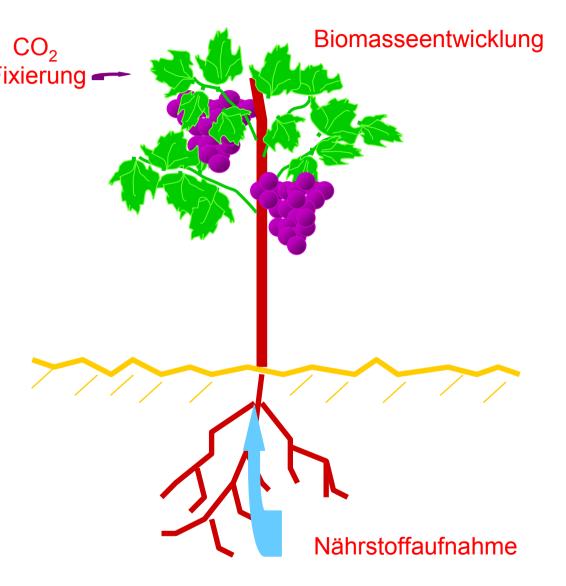
Gesamter jährlich fixierter Kohlenstoff pro Anbauart nach Pflanze bzw. Baum

Gesamter, in den Böden akkumulierter Kohlenstoff (%)

Bodenart	C GESAMT (%)		
Gemüseanbau	6.05		
Getreide	6.36		
Obstbäume	7.15		
Zitruspflanzen	7.13		
Nicht bebaute Felder	5.77		
Wege	5.79		


Proben wurden bei 30 cm unter der Oberfläche genommen.

Vergleich mit Ergebnissen aus der Literatur


- Einführung
- Angewandte Methodologie
- Ergebnisse
- Schlussfolgerungen

Alle untersuchten Arten Fixierung
 sind hocheffizient in der
 CO₂ -Fixierung

Bessere
 Anbaubedingungen
 werden die CO₂ -Effizienz
 optimieren

 Nebenprodukte müssen mitberücksichtigt werden

Wasseraufnahme

Danksagungen

Technische Assistenz und Ernte

LANGMEAD FARMS,
Experimental farm of CEBAS-CSIC,
JOSÉ PEÑALVER FERNÁNDEZ,
CDTA EL MIRADOR,
MORTE QUILES,
FRUTAS ESTHER,
FRUTAS TORERO,
APROEXPA
FECOAM

Mitarbeiter Aquaporine

Prof. Micaela Carvajal
Dr. M. Carmen Martínez-Ballesta
Dr. Carlos Alcaraz
Beatriz Muries- PhD student
María Iglesias -PhD student
Cesar Mota- PhD student
M. Carmen Rodriguez- PhD student
Celia Gutierrez-PhD student
Eva Morales-Technician

